Maxwell 3D: asymmetric conductor analysis#

This example uses PyAEDT to set up the TEAM 7 problem for an asymmetric conductor with a hole and solve it using the Maxwell 3D Eddy Current solver. https://www.compumag.org/wp/wp-content/uploads/2018/06/problem7.pdf

Perform required imports#

Perform required imports.

```import numpy as np
import os
import tempfile

from pyaedt import Maxwell3d
from pyaedt.generic.general_methods import write_csv
```

Create temporary directory#

Create temporary directory.

```temp_dir = tempfile.TemporaryDirectory(suffix=".ansys")
```

Set non-graphical mode#

Set non-graphical mode. You can set `non_graphical` either to `True` or `False`.

```non_graphical = False
```

Launch AEDT and Maxwell 3D#

Launch AEDT and Maxwell 3D. The following code sets up the project and design names, the solver, and the version. It also creates an instance of the `Maxwell3d` class named `m3d`.

```project_name = "COMPUMAG"
design_name = "TEAM 7 Asymmetric Conductor"
solver = "EddyCurrent"
desktop_version = "2023.2"

m3d = Maxwell3d(
projectname=project_name,
designname=design_name,
solution_type=solver,
specified_version=desktop_version,
non_graphical=non_graphical,
new_desktop_session=True
)
m3d.modeler.model_units = "mm"
```
```Initializing new desktop!
C:\actions-runner\_work\_tool\Python\3.10.5\x64\lib\subprocess.py:1070: ResourceWarning: subprocess 11148 is still running
_warn("subprocess %s is still running" % self.pid,
```

Add a Maxwell 3D setup with frequency points at DC, 50 Hz, and 200Hz. Otherwise, the default PyAEDT setup values are used. To approximate a DC field in the Eddy Current solver, use a low frequency value. Second-order shape functions improve the smoothness of the induced currents in the plate.

```dc_freq = 0.1
stop_freq = 50

setup = m3d.create_setup(setupname="Setup1")
setup.props["Frequency"] = "200Hz"
setup.props["HasSweepSetup"] = True
setup.add_eddy_current_sweep("LinearStep", dc_freq, stop_freq, stop_freq - dc_freq, clear=True)
setup.props["UseHighOrderShapeFunc"] = True
setup.props["PercentError"] = 0.4
setup.update()
```
```True
```

Define coil dimensions#

Define coil dimensions as shown on the TEAM7 drawing of the coil.

```coil_external = 150 + 25 + 25
coil_internal = 150
coil_r1 = 25
coil_r2 = 50
coil_thk = coil_r2 - coil_r1
coil_height = 100
coil_centre = [294 - 25 - 150 / 2, 25 + 150 / 2, 19 + 30 + 100 / 2]

# Use expressions to construct the three dimensions needed to describe the midpoints of
# the coil.

dim1 = coil_internal / 2 + (coil_external - coil_internal) / 4
dim2 = coil_internal / 2 - coil_r1
dim3 = dim2 + np.sqrt(((coil_r1 + (coil_r2 - coil_r1) / 2) ** 2) / 2)

# Use coordinates to draw a polyline along which to sweep the coil cross sections.
P1 = [dim1, -dim2, 0]
P2 = [dim1, dim2, 0]
P3 = [dim3, dim3, 0]
P4 = [dim2, dim1, 0]
```

Create coordinate system for positioning coil#

Create a coordinate system for positioning the coil.

```m3d.modeler.create_coordinate_system(origin=coil_centre, mode="view", view="XY", name="Coil_CS")
```
```<pyaedt.modeler.cad.Modeler.CoordinateSystem object at 0x0000026980EED750>
```

Create polyline#

Create a polyline. One quarter of the coil is modeled by sweeping a 2D sheet along a polyline.

```test = m3d.modeler.create_polyline(position_list=[P1, P2, P3, P4], segment_type=["Line", "Arc"], name="Coil")
test.set_crosssection_properties(type="Rectangle", width=coil_thk, height=coil_height)
```
```<pyaedt.modeler.cad.polylines.Polyline object at 0x0000026980EEF4F0>
```

Duplicate and unite polyline to create full coil#

Duplicate and unit the polyline to create a full coil.

```m3d.modeler.duplicate_around_axis(
"Coil", cs_axis="Global", angle=90, nclones=4, create_new_objects=True, is_3d_comp=False
)
m3d.modeler.unite("Coil, Coil_1, Coil_2")
m3d.modeler.unite("Coil, Coil_3")
m3d.modeler.fit_all()
```

Assign material and if solution is allowed inside coil#

Assign the material `Cooper` from the Maxwell internal library to the coil and allow a solution inside the coil.

```m3d.assign_material("Coil", "Copper")
m3d.solve_inside("Coil")
```
```True
```

Create terminal#

Create a terminal for the coil from a cross-section that is split and one half deleted.

```m3d.modeler.section("Coil", "YZ")
m3d.modeler.separate_bodies("Coil_Section1")
m3d.modeler.delete("Coil_Section1_Separate1")

# Add variable for coil excitation
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Add a design variable for coil excitation. The NB units here are AmpereTurns.

Coil_Excitation = 2742
m3d["Coil_Excitation"] = str(Coil_Excitation) + "A"
m3d.assign_current(object_list="Coil_Section1", amplitude="Coil_Excitation", solid=False)
m3d.modeler.set_working_coordinate_system("Global")
```
```True
```

Add a material named `team3_aluminium`.

```mat = m3d.materials.add_material("team7_aluminium")
mat.conductivity = 3.526e7
```

Model aluminium plate with a hole#

Model the aluminium plate with a hole by subtracting two rectangular cuboids.

```plate = m3d.modeler.create_box(position=[0, 0, 0], dimensions_list=[294, 294, 19], name="Plate",
matname="team7_aluminium")
m3d.modeler.fit_all()
m3d.modeler.create_box(position=[18, 18, 0], dimensions_list=[108, 108, 19], name="Hole")
m3d.modeler.subtract(blank_list="Plate", tool_list=["Hole"], keep_originals=False)
```
```True
```

Draw a background region#

Draw a background region that uses the default properties for an air region.

```m3d.modeler.create_air_region(x_pos=100, y_pos=100, z_pos=100, x_neg=100, y_neg=100, z_neg=100)
```
```<pyaedt.modeler.cad.object3d.Object3d object at 0x0000026980EF1D50>
```

Adjust eddy effects for plate and coil#

Adjust the eddy effects for the plate and coil by turning off displacement currents for all parts. The setting for eddy effect is ignored for the stranded conductor type used in the coil.

```m3d.eddy_effects_on(object_list="Plate")
m3d.eddy_effects_on(object_list=["Coil", "Region", "Line_A1_B1mesh", "Line_A2_B2mesh"],
activate_eddy_effects=False,
activate_displacement_current=False)
```
```True
```

Create expression for Z component of B in Gauss#

Create an expression for the Z component of B in Gauss using the fields calculator.

```Fields = m3d.ofieldsreporter
Fields.CalcStack("clear")
Fields.EnterQty("B")
Fields.CalcOp("ScalarZ")
Fields.EnterScalarFunc("Phase")
Fields.CalcOp("AtPhase")
Fields.EnterScalar(10000)
Fields.CalcOp("*")
Fields.CalcOp("Smooth")
```

Draw two lines along which to plot Bz#

Draw two lines along which to plot Bz. The following code also adds a small cylinder to refine the mesh locally around each line.

```lines = ["Line_A1_B1", "Line_A2_B2"]
mesh_diameter = "2mm"

line_points_1 = [["0mm", "72mm", "34mm"], ["288mm", "72mm", "34mm"]]
polyline = m3d.modeler.create_polyline(position_list=line_points_1, name=lines[0])
l1_mesh = m3d.modeler.create_polyline(position_list=line_points_1, name=lines[0] + "mesh")
l1_mesh.set_crosssection_properties(type="Circle", width=mesh_diameter)

line_points_2 = [["0mm", "144mm", "34mm"], ["288mm", "144mm", "34mm"]]
polyline2 = m3d.modeler.create_polyline(position_list=line_points_2, name=lines[1])
l2_mesh = m3d.modeler.create_polyline(position_list=line_points_2, name=lines[1] + "mesh")
l2_mesh.set_crosssection_properties(type="Circle", width=mesh_diameter)
```
```<pyaedt.modeler.cad.polylines.Polyline object at 0x0000026980EF00D0>
```

Plot model#

Plot the model.

```m3d.plot(show=False, export_path=os.path.join(temp_dir.name, "model.jpg"), plot_air_objects=False)
```
```<pyaedt.generic.plot.ModelPlotter object at 0x0000026980EF0BE0>
```

Published measurement results are included with this script via the list below. Test results are used to create text files for import into a rectangular plot and to overlay simulation results.

```dataset = [
"Bz A1_B1 000 0",
"Bz A1_B1 050 0",
"Bz A1_B1 050 90",
"Bz A1_B1 200 0",
"Bz A1_B1 200 90",
"Bz A2_B2 050 0",
"Bz A2_B2 050 90",
"Bz A2_B2 200 0",
"Bz A2_B2 200 90",
]
header = ["Distance [mm]", "Bz [Tesla]"]

line_length = [0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288]
data = [
[
-6.667,
-7.764,
-8.707,
-8.812,
-5.870,
8.713,
50.40,
88.47,
100.9,
104.0,
104.8,
104.9,
104.6,
103.1,
97.32,
75.19,
29.04,
],
[
4.90,
-17.88,
-22.13,
-20.19,
-15.67,
0.36,
43.64,
78.11,
71.55,
60.44,
53.91,
52.62,
53.81,
56.91,
59.24,
52.78,
27.61,
],
[-1.16, 2.84, 4.15, 4.00, 3.07, 2.31, 1.89, 4.97, 12.61, 14.15, 13.04, 12.40, 12.05, 12.27, 12.66, 9.96, 2.36],
[
-3.63,
-18.46,
-23.62,
-21.59,
-16.09,
0.23,
44.35,
75.53,
63.42,
53.20,
48.66,
47.31,
48.31,
51.26,
53.61,
46.11,
24.96,
],
[-1.38, 1.20, 2.15, 1.63, 1.10, 0.27, -2.28, -1.40, 4.17, 3.94, 4.86, 4.09, 3.69, 4.60, 3.48, 4.10, 0.98],
[
-1.83,
-8.50,
-13.60,
-15.21,
-14.48,
-5.62,
28.77,
60.34,
61.84,
56.64,
53.40,
52.36,
53.93,
56.82,
59.48,
52.08,
26.56,
],
[-1.63, -0.60, -0.43, 0.11, 1.26, 3.40, 6.53, 10.25, 11.83, 11.83, 11.01, 10.58, 10.80, 10.54, 10.62, 9.03, 1.79],
[
-0.86,
-7.00,
-11.58,
-13.36,
-13.77,
-6.74,
24.63,
53.19,
54.89,
50.72,
48.03,
47.13,
48.25,
51.35,
53.35,
45.37,
24.01,
],
[-1.35, -0.71, -0.81, -0.67, 0.15, 1.39, 2.67, 3.00, 4.01, 3.80, 4.00, 3.02, 2.20, 2.78, 1.58, 1.37, 0.93],
]
```

Write dataset values in a CSV file#

Dataset details are used to encode test parameters in the text files. For example, `Bz A1_B1 050 0` is the Z component of flux density `B`. along line `A1_B1` at 50 Hz and 0 deg.

```line_length.insert(0, header[0])
for i in range(len(dataset)):
ziplist = zip(line_length, data[i])
file_path = os.path.join(temp_dir.name, str(dataset[i]) + ".csv")
write_csv(output=file_path, list_data=ziplist)
```

Create rectangular plots and import test data into report#

Create rectangular plots, using text file encoding to control their formatting. Import test data into correct plot and overlay with simulation results. Variations for a DC plot must have different frequency and phase than the other plots.

```for item in range(len(dataset)):
if item % 2 == 0:
t = dataset[item]
plot_name = t[0:3] + "Along the Line" + t[2:9] + ", " + t[9:12] + "Hz"
if t[9:12] == "000":
variations = {
"Distance": ["All"],
"Freq": [str(dc_freq) + "Hz"],
"Phase": ["0deg"],
"Coil_Excitation": ["All"],
}
else:
variations = {
"Distance": ["All"],
"Freq": [t[9:12] + "Hz"],
"Phase": ["0deg", "90deg"],
"Coil_Excitation": ["All"],
}
report = m3d.post.create_report(
plotname=plot_name,
report_category="Fields",
context="Line_" + t[3:8],
primary_sweep_variable="Distance",
variations=variations,
expressions=t[0:2],
)
file_path = os.path.join(temp_dir.name, str(dataset[i]) + ".csv")
report.import_traces(file_path, plot_name)
```

Analyze project#

Analyze the project.

```m3d.analyze()
```
```True
```

Create plots of induced current and flux density on surface of plate#

Create two plots of the induced current (`Mag_J`) and the flux density (`Mag_B`) on the surface of the plate.

```surf_list = m3d.modeler.get_object_faces("Plate")
intrinsic_dict = {"Freq": "200Hz", "Phase": "0deg"}
m3d.post.create_fieldplot_surface(surf_list, "Mag_J", intrinsincDict=intrinsic_dict, plot_name="Mag_J")
m3d.post.create_fieldplot_surface(surf_list, "Mag_B", intrinsincDict=intrinsic_dict, plot_name="Mag_B")
m3d.post.create_fieldplot_surface(surf_list, "Mesh", intrinsincDict=intrinsic_dict, plot_name="Mesh")
```
```<pyaedt.modules.solutions.FieldPlot object at 0x00000269830FCDC0>
```

Release AEDT and clean up temporary directory#

Release AEDT and remove both the project and temporary directories.

```m3d.release_desktop(True, True)
temp_dir.cleanup()
```

Total running time of the script: (6 minutes 17.654 seconds)

Gallery generated by Sphinx-Gallery