EDB: 5G linear array antenna#

This example shows how you can use HFSS 3D Layout to create and solve a 5G linear array antenna.

Perform required imports#

Perform required imports.

import tempfile
import pyaedt
import os

Set non-graphical mode#

Set non-graphical mode. The default is False.

non_graphical = False


class Patch:
    def __init__(self, width=0.0, height=0.0, position=0.0):
        self.width = width
        self.height = height
        self.position = position

    @property
    def points(self):
        return [
            [self.position, -self.height / 2],
            [self.position + self.width, -self.height / 2],
            [self.position + self.width, self.height / 2],
            [self.position, self.height / 2],
        ]


class Line:
    def __init__(self, length=0.0, width=0.0, position=0.0):
        self.length = length
        self.width = width
        self.position = position

    @property
    def points(self):
        return [
            [self.position, -self.width / 2],
            [self.position + self.length, -self.width / 2],
            [self.position + self.length, self.width / 2],
            [self.position, self.width / 2],
        ]


class LinearArray:
    def __init__(self, nb_patch=1, array_length=10e-3, array_width=5e-3):
        self.nbpatch = nb_patch
        self.length = array_length
        self.width = array_width

    @property
    def points(self):
        return [
            [-1e-3, -self.width / 2 - 1e-3],
            [self.length + 1e-3, -self.width / 2 - 1e-3],
            [self.length + 1e-3, self.width / 2 + 1e-3],
            [-1e-3, self.width / 2 + 1e-3],
        ]


tmpfold = tempfile.gettempdir()
aedb_path = os.path.join(tmpfold, pyaedt.generate_unique_name("pcb") + ".aedb")
print(aedb_path)
edb = pyaedt.Edb(edbpath=aedb_path, edbversion="2023.2")
D:\Temp\pcb_SQ922L.aedb

Add stackup layers#

Add the stackup layers.

if edb:
    edb.stackup.add_layer("Virt_GND")
    edb.stackup.add_layer("Gap", "Virt_GND", layer_type="dielectric", thickness="0.05mm", material="Air")
    edb.stackup.add_layer("GND", "Gap")
    edb.stackup.add_layer("Substrat", "GND", layer_type="dielectric", thickness="0.5mm", material="Duroid (tm)")
    edb.stackup.add_layer("TOP", "Substrat")
Duroid (tm) does not exist in material library

Create linear array#

Create the first patch of the linear array.

first_patch = Patch(width=1.4e-3, height=1.2e-3, position=0.0)
edb.modeler.create_polygon(first_patch.points, "TOP", net_name="Array_antenna")
# First line
first_line = Line(length=2.4e-3, width=0.3e-3, position=first_patch.width)
edb.modeler.create_polygon(first_line.points, "TOP", net_name="Array_antenna")
<pyaedt.edb_core.edb_data.primitives_data.EdbPolygon object at 0x000001D9EDB60E50>

Patch linear array#

Patch the linear array.

patch = Patch(width=2.29e-3, height=3.3e-3)
line = Line(length=1.9e-3, width=0.2e-3)
linear_array = LinearArray(nb_patch=8, array_width=patch.height)

current_patch = 1
current_position = first_line.position + first_line.length

while current_patch <= linear_array.nbpatch:
    patch.position = current_position
    edb.modeler.create_polygon(patch.points, "TOP", net_name="Array_antenna")
    current_position += patch.width
    if current_patch < linear_array.nbpatch:
        line.position = current_position
        edb.modeler.create_polygon(line.points, "TOP", net_name="Array_antenna")
        current_position += line.length
    current_patch += 1

linear_array.length = current_position

Add ground#

Add a ground.

edb.modeler.create_polygon(linear_array.points, "GND", net_name="GND")
<pyaedt.edb_core.edb_data.primitives_data.EdbPolygon object at 0x000001D9EE1FD180>

Add connector pin#

Add a central connector pin.

edb.padstacks.create(padstackname="Connector_pin", holediam="100um", paddiam="0", antipaddiam="200um")
con_pin = edb.padstacks.place(
    [first_patch.width / 4, 0],
    "Connector_pin",
    net_name="Array_antenna",
    fromlayer="TOP",
    tolayer="GND",
    via_name="coax",
)

Add connector ground#

Add a connector ground.

edb.modeler.create_polygon(first_patch.points, "Virt_GND", net_name="GND")
edb.padstacks.create("gnd_via", "100um", "0", "0")
con_ref1 = edb.padstacks.place(
    [first_patch.points[0][0] + 0.2e-3, first_patch.points[0][1] + 0.2e-3],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref2 = edb.padstacks.place(
    [first_patch.points[1][0] - 0.2e-3, first_patch.points[1][1] + 0.2e-3],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref3 = edb.padstacks.place(
    [first_patch.points[2][0] - 0.2e-3, first_patch.points[2][1] - 0.2e-3],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)
con_ref4 = edb.padstacks.place(
    [first_patch.points[3][0] + 0.2e-3, first_patch.points[3][1] - 0.2e-3],
    "gnd_via",
    fromlayer="GND",
    tolayer="Virt_GND",
    net_name="GND",
)

Add excitation port#

Add an excitation port.

edb.padstacks.set_solderball(con_pin, "Virt_GND", isTopPlaced=False, ballDiam=0.1e-3)
port_name = edb.padstacks.create_coax_port(con_pin)

Plot geometry#

Plot the geometry.

edb.nets.plot(None)
Cell_01K4KT

Save and close Edb instance prior to opening it in Electronics Desktop.#

Save EDB.

edb.save_edb()
edb.close_edb()
print("EDB saved correctly to {}. You can import in AEDT.".format(aedb_path))
EDB saved correctly to D:\Temp\pcb_SQ922L.aedb. You can import in AEDT.

Launch HFSS 3D Layout and open EDB#

Launch HFSS 3D Layout and open EDB.

h3d = pyaedt.Hfss3dLayout(projectname=aedb_path, specified_version="2023.2", new_desktop_session=True,
                          non_graphical=non_graphical)
Initializing new desktop!

Plot geometry#

Plot the geometry. The EDB methods are also accessible from the Hfss3dlayout class.

h3d.modeler.edb.nets.plot(None)
Cell_01K4KT

Create setup and sweeps#

Getters and setters facilitate the settings on the nested property dictionary. Previously, you had to use these commands:

  • setup.props["AdaptiveSettings"]["SingleFrequencyDataList"]["AdaptiveFrequencyData"]["AdaptiveFrequency"] = "20GHz"

  • setup.props["AdaptiveSettings"]["SingleFrequencyDataList"]["AdaptiveFrequencyData"]["MaxPasses"] = 4

You can now use the simpler approach that follows.

setup = h3d.create_setup()

setup["AdaptiveFrequency"] = "20GHz"
setup["AdaptiveSettings/SingleFrequencyDataList/AdaptiveFrequencyData/MaxPasses"] = 4
h3d.create_linear_count_sweep(
    setupname=setup.name,
    unit="GHz",
    freqstart=20,
    freqstop=50,
    num_of_freq_points=1001,
    sweepname="sweep1",
    sweep_type="Interpolating",
    interpolation_tol_percent=1,
    interpolation_max_solutions=255,
    save_fields=False,
    use_q3d_for_dc=False,
)
<pyaedt.modules.SolveSweeps.SweepHFSS3DLayout object at 0x000001D9EDB09CC0>

Solve setup and create report#

Solve the project and create a report.

h3d.analyze()
h3d.post.create_report(["db(S({0},{1}))".format(port_name, port_name)])
<pyaedt.modules.report_templates.Standard object at 0x000001D9EDC711B0>

Plot results outside AEDT#

Plot results using Matplotlib.

solution = h3d.post.get_solution_data(["S({0},{1})".format(port_name, port_name)])
solution.plot()
Simulation Results Plot
<Figure size 2000x1000 with 1 Axes>

Close AEDT#

After the simulation completes, you can close AEDT or release it using the pyaedt.Desktop.release_desktop() method. All methods provide for saving the project before closing AEDT.

h3d.save_project()
h3d.release_desktop()
True

Total running time of the script: (2 minutes 12.025 seconds)

Gallery generated by Sphinx-Gallery