Note
Go to the end to download the full example code.
Maxwell 3D: bath plate analysis#
This example uses PyAEDT to set up the TEAM 3 bath plate problem and solve it using the Maxwell 3D Eddy Current solver. https://www.compumag.org/wp/wp-content/uploads/2018/06/problem3.pdf
Perform required imports#
Perform required imports.
import os
import pyaedt
import tempfile
Set AEDT version#
Set AEDT version.
aedt_version = "2024.1"
Create temporary directory#
Create temporary directory.
temp_dir = tempfile.TemporaryDirectory(suffix=".ansys")
Set non-graphical mode#
Set non-graphical mode.
You can set non_graphical
either to True
or False
.
non_graphical = False
Launch AEDT and Maxwell 3D#
Launch AEDT and Maxwell 3D after first setting up the project and design names,
the solver, and the version. The following code also creates an instance of the
Maxwell3d
class named M3D
.
project_name = "COMPUMAG"
design_name = "TEAM 3 Bath Plate"
solver = "EddyCurrent"
m3d = pyaedt.Maxwell3d(
projectname=project_name,
designname=design_name,
solution_type=solver,
specified_version=aedt_version,
non_graphical=non_graphical,
new_desktop_session=True,
)
m3d.modeler.model_units = "mm"
C:\actions-runner\_work\_tool\Python\3.10.9\x64\lib\subprocess.py:1072: ResourceWarning: subprocess 10072 is still running
_warn("subprocess %s is still running" % self.pid,
C:\actions-runner\_work\pyaedt\pyaedt\.venv\lib\site-packages\pyaedt\generic\settings.py:383: ResourceWarning: unclosed file <_io.TextIOWrapper name='D:\\Temp\\pyaedt_ansys.log' mode='a' encoding='cp1252'>
self._logger = val
Add variable#
Add a design variable named Coil_Position
that you use later to adjust the
position of the coil.
Coil_Position = -20
m3d["Coil_Position"] = str(Coil_Position) + m3d.modeler.model_units
Add material#
Add a material named team3_aluminium
for the ladder plate.
mat = m3d.materials.add_material("team3_aluminium")
mat.conductivity = 32780000
Draw background region#
Draw a background region that uses the default properties for an air region.
m3d.modeler.create_air_region(x_pos=100, y_pos=100, z_pos=100, x_neg=100, y_neg=100, z_neg=100)
<pyaedt.modeler.cad.object3d.Object3d object at 0x0000022602306F20>
Draw ladder plate and assign material#
Draw a ladder plate and assign it the newly created material team3_aluminium
.
m3d.modeler.create_box(origin=[-30, -55, 0], sizes=[60, 110, -6.35], name="LadderPlate", material="team3_aluminium")
m3d.modeler.create_box(origin=[-20, -35, 0], sizes=[40, 30, -6.35], name="CutoutTool1")
m3d.modeler.create_box(origin=[-20, 5, 0], sizes=[40, 30, -6.35], name="CutoutTool2")
m3d.modeler.subtract("LadderPlate", ["CutoutTool1", "CutoutTool2"], keep_originals=False)
True
Add mesh refinement to ladder plate#
Add a mesh refinement to the ladder plate.
m3d.mesh.assign_length_mesh("LadderPlate", maximum_length=3, maximum_elements=None, name="Ladder_Mesh")
<pyaedt.modules.Mesh.MeshOperation object at 0x0000022602305F00>
Draw search coil and assign excitation#
Draw a search coil and assign it a stranded
current excitation.
The stranded type forces the current density to be constant in the coil.
m3d.modeler.create_cylinder(orientation="Z", origin=[0, "Coil_Position", 15], radius=40, height=20, name="SearchCoil",
material="copper")
m3d.modeler.create_cylinder(orientation="Z", origin=[0, "Coil_Position", 15], radius=20, height=20, name="Bore",
material="copper")
m3d.modeler.subtract("SearchCoil", "Bore", keep_originals=False)
m3d.modeler.section("SearchCoil", "YZ")
m3d.modeler.separate_bodies("SearchCoil_Section1")
m3d.modeler.delete("SearchCoil_Section1_Separate1")
m3d.assign_current(assignment=["SearchCoil_Section1"], amplitude=1260, solid=False, name="SearchCoil_Excitation")
<pyaedt.modules.Boundary.BoundaryObject object at 0x0000022601038E20>
Draw a line for plotting Bz#
Draw a line for plotting Bz later. Bz is the Z component of the flux density. The following code also adds a small diameter cylinder to refine the mesh locally around the line.
line_points = [["0mm", "-55mm", "0.5mm"], ["0mm", "55mm", "0.5mm"]]
m3d.modeler.create_polyline(points=line_points, name="Line_AB")
poly = m3d.modeler.create_polyline(points=line_points, name="Line_AB_MeshRefinement")
poly.set_crosssection_properties(type="Circle", width="0.5mm")
<pyaedt.modeler.cad.object3d.Object3d object at 0x00000226010399F0>
Plot model#
Plot the model.
m3d.plot(show=False, export_path=os.path.join(temp_dir.name, "Image.jpg"), plot_air_objects=False)

<pyaedt.generic.plot.ModelPlotter object at 0x0000022601038670>
Add Maxwell 3D setup#
Add a Maxwell 3D setup with frequency points at 50 Hz and 200 Hz.
setup = m3d.create_setup(name="Setup1")
setup.props["Frequency"] = "200Hz"
setup.props["HasSweepSetup"] = True
setup.add_eddy_current_sweep(range_type="LinearStep", start=50, end=200, count=150, clear=True)
True
Adjust eddy effects#
Adjust eddy effects for the ladder plate and the search coil. The setting for eddy effect is ignored for the stranded conductor type used in the search coil.
m3d.eddy_effects_on(assignment=["LadderPlate"], enable_eddy_effects=True, enable_displacement_current=True)
m3d.eddy_effects_on(assignment=["SearchCoil"], enable_eddy_effects=False, enable_displacement_current=True)
True
Add linear parametric sweep#
Add a linear parametric sweep for the two coil positions.
sweep_name = "CoilSweep"
param = m3d.parametrics.add("Coil_Position", -20, 0, 20, "LinearStep", parametricname=sweep_name)
param["SaveFields"] = True
param["CopyMesh"] = False
param["SolveWithCopiedMeshOnly"] = True
Solve parametric sweep#
Solve the parametric sweep directly so that results of all variations are available.
m3d.analyze_setup(sweep_name)
True
Create expression for Bz#
Create an expression for Bz using the fields calculator.
Fields = m3d.ofieldsreporter
Fields.EnterQty("B")
Fields.CalcOp("ScalarZ")
Fields.EnterScalar(1000)
Fields.CalcOp("*")
Fields.CalcOp("Smooth")
Fields.AddNamedExpression("Bz", "Fields")
Plot mag(Bz) as a function of frequency#
Plot mag(Bz) as a function of frequency for both coil positions.
variations = {"Distance": ["All"], "Freq": ["All"], "Phase": ["0deg"], "Coil_Position": ["All"]}
m3d.post.create_report(expressions="mag(Bz)", variations=variations, primary_sweep_variable="Distance",
report_category="Fields", context="Line_AB", plot_name="mag(Bz) Along 'Line_AB' Coil")
<pyaedt.modules.report_templates.Fields object at 0x00000226023072E0>
Get simulation results from a solved setup#
Get simulation results from a solved setup as a SolutionData
object.
solutions = m3d.post.get_solution_data(
expressions="mag(Bz)",
report_category="Fields",
context="Line_AB",
variations=variations,
primary_sweep_variable="Distance",
)
Set up sweep value and plot solution#
Set up a sweep value and plot the solution.
solutions.active_variation["Coil_Position"] = -0.02
solutions.plot()

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
<Figure size 2000x1000 with 1 Axes>
Change sweep value and plot solution#
Change the sweep value and plot the solution again.
solutions.active_variation["Coil_Position"] = 0
solutions.plot()

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
<Figure size 2000x1000 with 1 Axes>
Plot induced current density on surface of ladder plate#
Plot the induced current density, "Mag_J"
, on the surface of the ladder plate.
ladder_plate = m3d.modeler.objects_by_name["LadderPlate"]
intrinsic_dict = {"Freq": "50Hz", "Phase": "0deg"}
m3d.post.create_fieldplot_surface(ladder_plate.faces, "Mag_J", intrinsics=intrinsic_dict, plot_name="Mag_J")
<pyaedt.modules.solutions.FieldPlot object at 0x000002264DDE1900>
Release AEDT#
Release AEDT from the script engine, leaving both AEDT and the project open.
m3d.release_desktop(False, False)
temp_dir.cleanup()
Total running time of the script: (12 minutes 31.912 seconds)