PyAEDT cheat sheet

Version: main

/ Launch AEDT

Launch an AEDT application directly:

from ansys.aedt.core import Hfss
app = Hfss()

Open a Desktop session in graphical mode, open a project and connect to an active design:

from ansys.aedt.core import Desktop
desktop = Desktop(version="2025.2",
 new_desktop=True, non_graphical=False,
 close_on_exit=True)
app = desktop.load_project(
 project_file="project_path")

Open a Desktop session in non-graphical mode and create a new Maxwell 3D design:

Connect to a running application with given project name and design name:

from ansys.aedt.core.generic.design_types import
 get_pyaedt_app

app = get_pyaedt_app(project_name="project_name", design="design_name")

/ Close the active AEDT session

/ Work with variables

Create a variable that only applies to this design:

hfss["dim"] = "1mm"

Create a variable that applies at a project level:

hfss["\$dim"] = "1mm"

Manage your variables:

hfss.variable_manager.variables

/ Handle your materials

Add a new material with custom properties:

material = hfss.materials.add_material("my_mat")
material.permittivity = 3.5
material.conductivity = 450000
material.permeability = 1.5

/ Create and manipulate geometry

Create a box and get object name:

Access edges or vertices data:

nb_edges = len(box.edges)
for edge in box.edges:
 print(edge.segment_info)
nb_vertices = len(box.vertices)
for vertex in box.vertices:
 print(vertex.position)

/ Define the solution setup

setup = hfss.create_setup("MySetup")
setup.props["Frequency"] = "50MHz"
setup.props["MaximumPasses"] = 10

Access the parametric sweep:

hfss.parametrics

Access the optimizations:

hfss.optimizations

Analyze the solution setup

hfss.analyze(cores=4)

/ Post processing

Post processing can be performed within and outside AEDT.

Report in AEDT

Create "Mag_E" report in a polyline:

test_points = [["0mm", "0mm", "0mm"], ["100mm", "20mm", "0mm"], ["71mm", "71mm", "0mm"], ["0mm", "100mm", "0mm"]] p1 = hfss.modeler.create_polyline(test_points) report = hfss.post.reports_by_category.fields("Mag_E", setup.name + " : LastAdaptive", p1.name) report.create()

Graphic operations

Visualize graphics objects and plot data within AEDT

field_plot = hfss.post.create_fieldplot_volume(
 ["box"], "Mag_E")
image_path = field_plot.export_image(
 r"C:\\workdir\\my_image.png")

Generate 2D/3D plots using third-party packages

hfss.post.plot_model_obj(objects=["box"],
 show_grid=True)

Get solution data

plot_data = hfss.get_traces_for_plot()
report = hfss.post.create_report(plot_data)
solution = report.get_solution_data()
plt = solution.plot(solution.expressions)

Generate PDF files using third-party packages

```
from ansys.aedt.core.visualization.plot.pdf import
    AnsysReport
pdf_report = AnsysReport(
    project_name=hfss.project_name,
    design_name=hfss.design_name)
pdf_report.create()
pdf_report.add_section()
pdf_report.add_chapter("HFSS Results")
pdf_report.add_text("This section contains plots.")
pdf_report.add_image(image_path)
pdf_report.save_pdf(file_path=r"C:\\workdir",
    file_name="report.pdf")
```

PyAEDT / Documentation / Getting started / Examples / User guide / API reference